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Metastability of a granular surface in a spinning bucket
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The surface shape of a spinning bucket of granular material is studied using a continuum model of surface
flow developed by Bouchauet al. and Mehtaet al. An experimentally observed central subcritical region is
reproduced by the model. The subcritical region occurs when a metastable surface becomes unstable via a
nonlinearinstability mechanism. The nonlinear instability mechanism destabilizes the surface in large systems
while a linear instability mechanism is relevant for smaller systems. The range of angles in which the granular
surface is metastable vanishes with increasing system[§2663-651X98)12504-7

PACS numbe(s): 83.70.Dk, 46.10tz, 46.30-i, 47.20—k

I. INTRODUCTION the Bagnold angle, depends on the system size and vanishes
in the limit of large systems.

Granular materials display very complex dynamics due to
their both fluidlike and solidlike characteristi¢$,2]. Even II. SUMMARY OF EXPERIMENT
simple experiments can produce unexpected results. Ex- _ o .
amples are recent experiments in which measurements were Fi9ure 1 shows the setup for the spinning bucket experi-
taken of the granular surface of a bucket of sand spun abot®€nt[3.4]. A bucket of radiusR, is partially filled with
its cylindrical axis[3,4]. At low rotation rates a central re- common building sand. A conical pile is prepared at the
gion was observed in which the slope is significantly less2ngle of repose;=34°+1°, by slowly dropping the plastic
than the critical slop§4—6]. This central subcritical region SPheres onto the center of the stationary buckdere we
was conjectured to be due to the inertia of the flowing grains@Pel the angle of reposé; since, in an ideal Coulomb ma-
[4] since it could not be explained in terms of a simplete”al’ the surface is everywhere crltlcal and_ t_he angle of
theory, which assumed the surface was everywhere criticdFP0Se is the same as the angle of internal fricfibj). The
[7]. rotgtlon ratew is then slowly increased until it reaches the

Many models have been developed to describe the evolfesired value and the resulting surface shape is measured.
tion of a granular surfacE8—15. These models often as-

sume that the flow is restricted to a thin layer of grains near ®

the surface. Such models have been used extensively to SR
study avalanches of a granular material in a horizontal rotat- e : )
ing drum[16]. However, the spinning bucket experiment is a T~ s < -7

better testing ground for these ideas since, at least at low .
rotation rates, the fundamental assumption of a thin flowing :
layer is more likely to be trugl7]. '
The purpose of this paper is twofold. The first is to apply
the flow models to the spinning bucket experiment. The sec-
ond is to explore the source and limits of the metastable
behavior observed in the model. In particular, a continuum I
description of the surface flow developed by Bouchatidl. }
[10] and Mehtaet al. [11] is used. This model includes the |
effect of the inertia of the flowing grains and is known to |
exhibit metastability via a linear instability mechanist0], ]
|
|
I
|
|
|
!

i.e., the surface remains metastable for a range of angles
beyond the minimum angle of repose. This difference in the
minimum and maximum stable angles was argued to be the
physical source of the Bagnold andl0].

Here | show that this model qualitatively reproduces the
central subcritical region. | determine the mechanism creat-
ing the subcritical region and show that it is closely inter-
twined with the metastability of the model. The metastable
surface becomes unstable viaenlinearinstability, i.e., an
instability to very small but noninfinitesimal perturbations.  FIG. 1. A cut-away view of the spinning bucket experiment. A
This nonlinear instability determines the dynamics forconical pile is prepared at the angle of rep@se The cylinder is
“large” systems while the linear instability is dominant for then spun about its vertical axis at rotation rat@nd the resulting
“small” systems. The range of metastable slopes and, hencsurface shape is measured.
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0.6 o - - - projection of the local position onto they plane.
“1le . ' The dynamics of the rolling layes(r,t) is given by
— [ J [ X J
04 = 04l ®ec? 1] ap ,
= =~ V- (vp)+DoVp+To({h} . {p}), 2

wherev=u,r is the local velocity of the rolling laye), is

the diffusion constant, anl, is the rate of conversion from
immobile to mobile grains and and V? are the two-
dimensional gradient and Laplacian, respectively. Assuming
that the grains flow outward, the conversion rate is
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FIG. 2. The surface shape 8t= \/w2R0/g=O.578 as given in
Ref.[4]. The center of the bucket is at=0 and the edge at/R,
=1. The dashed line is the result of an ideal Coulomb material with
6y=34° and the points are the experimental data. The inset showghere? is the Heaviside function. The first term Ify, ac-
the experimental and theoretical slopes. The experiment and theogpunts for the conversion of static grains to rolling grains
agree near the outer edge of the bucket but the slope at the centefjthen the slope is steeper than the critical slog/gr
significantly less negative than that of an ideal Coulomb material.<sf) and vice versa for a shallower slope. TbeoVZh

. , term causes valleys to fill and peaks to smooth. The last term
For an ideal Coulomb material the granular surface shapg, T', accounts for the jarring loose of static grains by the

is found by assuming that the friction force is saturated andyaiion of the bucket even in the absence of a flowing layer.
relating the net force on a surface element to the centripetin, |y assuming that bulk rearrangement of material can be
acceleration 3,4,6). The critical slopeS_ is a function of neglected, conservation of total material requires

radial distance and w,

oh oh
—-S (r)}H(a—r—S (r)), (3

—
Ol or

2_ h__
S‘(r)=@— (r/Rg) Q“—tand; @ g To({ht{p}). 4)

dr 1+ (r/Ry)Q2tans;’

For ag=0 the model is the same as that introduced by
whereh(r) is the local heightQ = Jw?R,/g is the dimen-  Bouchaudet al.[10]. Mehtaet al. allowed for a nonzeray,
sionless rotation ratey is the gravitational acceleration, and and also included an additional bulk arrangement tgkfr).

R, is the bucket radius. The superscript indicates that the ~ To compare with experiment we require a rough estimate
friction force is inwards since the grains flow outwards. Noteof the model parameters:
thatS™ (r) is negative for smal) so that an unstable surface (i) The speed of the rolling grains, can be estimated

corresponds t@h/dr<S™(r). from the speed of a grain falling through a grain diameter
Experimentally, the surface agrees well with &) for  d,: v,~/2gd,.
intermediate rotation rates<2)=<5 [3,4] but less well for (ii) A narrow bump of rolling grains starting at the center

larger and smallef). This paper will focus on the low rota- will reach the edge of the bucket in timig=R,/v,. Diffu-
tion rates,()=<2. Figure 2 shows the experimental surfacesjon causes this bump to spread to a widtk= Dty
shape obtained by Baxter f6t=0.578 along with the pre- = /D R,/v, when it reaches the edge. Sinta~ R, the
diction for a ideal Coulomb material usiry=34° [4]. The  wjdth of the bump is much less than the system size for large

corresponding slopes are shown in the inset. There is reasor; . Therefore the “large” system limit corresponds to
able agreement between experiment and theory at the outer

edge € =Ry/2). However, in the center=Ry/2, the slope is (AX)2 D,
much less than the critical slope. This was thought to be =
because the critical theory neglects the effects of grain inertia

[4].

= <1. 5)
R3 voRo

The “small” limit corresponds to the width of the bump
being of the same order as the systenbgr(voR)=1 [18].
(iii) yoASdy/v is the probability that a rolling grain jars
To analyze the spinning bucket experiment we use d00se a static grain as it rolls over it. A typical excess slope
model of the granular surface evolution developed byof AS=0.1 and, assuming a 10% probability that the static
Bouchaudet al. [10] and Mehtaet al. [11]. The model as- grain is converted to rolling, givegy~vy/dg.
sumes that all grains are stationary except for a thin layer of (iv) The ratioxg/ vy, defines a length scale on which the
flowing grains on the top. We define(r,t) as the local hole filling—peak smoothing mechanism dominates. This is
height of the immobile pile and(r,t) as the thickness of the important only at very small length scales on the order of a
rolling layer. Herer is the two-dimensional vector giving the few grain diameters seq~dy7yg .

Ill. THE MODEL
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(V) @ depends on the noise in the apparatus. The genera- IV. NUMERICAL RESULTS
tion of rolling material by noise is assumed to be much less
effective than the convection so thag<v, .

Equations(2)—(4) can be rewritten in dimensionless form  To analyze the spinning bucket experiment, E§$—(8)
by measuring lengths in terms of the bucket radigsand  were numerically integrated in polar coordinates with azi-

A. Spinning bucket

time in terms ofty=Ry/vg, muthal symmetry. Using the experimental parameteés,
=34°, dy=~0.25 mm andRy,=12.5 cm[4], we obtainy
ap . ) =Ry/dp=500 and «k/y=dy/Ry=1/200. Assuming a

St = V- (rp)+DVp+T(th{p}), (6)  “large” system and small vibrations, we choofe=0.001

<1 and =108, A third-order Adam-Bashford method
was used 19] with mesh-sizeSx=0.002 and time-stet
=5x10 ’. Zero slope boundary conditions are applied at
h r=0 and zero curvature boundary conditionsratl. Any

_ rolling material reaching the edge is converted to static.
F({h},{p})=—p[y(5—s (r))+xv2h} J J g

where

An initial conical pile is prepared at the critical angle and
the rotation rate) is increased instantaneously frafih=0
ﬂ—S(r)}H(@ —S(r)) 7) to 2=0.6. Since the critical slope decreases witthe ini-
ar ar ’ tial surface is unstable and, as shown in Fig. 3, an avalanche
is generated. At~0.125[Fig. 3@)] a buildup of flowing
and material is visible at the edge of the bucket. This buildup
generates a steep local slope in the static pile that causes the
h static material uphill to fail. The failure then propagates up-
—=—T{h}{p}). (8  hill, reaching the center of the bucket tat0.2 [Fig. 3(b)].
at The static pile beneath the flowing layer approximately fol-
lows the critical curve. The flowing layer then convects to
The dimensionless parameters af@=Dg/(voR), ¥ the edge of buckgiFig. 3(c)] leaving behind a central sub-
=7yoRlvg, k=kKglvg anda=ag/vg. critical region in which the slope is much less than the criti-
Assuming a large system, order of magnitude estimates afal slope[Fig. 3(d)].
the dimensionless parameters can be obtained from the ear- The integration was repeated with different valueDof

-

lier estimates: v, and k to test the robustness of the results. The central
subcritical region is qualitatively the same for aH=400 and
0 R R D=0.005, becoming more pronounced for larggrand
DEUOR<1-7 = 0o do’ smaller D. For smallery and largerD (y=<200 andD

=0.02) the final surface follows closely the critical surface.
Varying the ratiox/y or « did not have noticeable effect as
ko _do %o ) long as they were small but nonzero.
vg R vg A comparison of model results in Fig. 3 with the experi-
mental data in Fig. 2 shows that the essential features of the
The speed of the rolling layer is unity under this rescaling.€xperiment are reproduced. In particular, there is a subcriti-
As shown in the next section, the behavior of the model isc@l region in the center and a region near the edge that fol-
most sensitive toy and less sensitive to the exact valuelof  lows the critical surface. However, a more detailed analysis
and « as long aD<1 andx/y<1. shows two important differences. First, the flowing layer is
An especially interesting feature of this model is that it Much larger than the few grains assumed in the model. Sec-
displays metastability and hysteresis. Bouchatidl. per- ©nd, in the experiment, the rotation rate is slowly ramped up
formed a linear stability analysis by balancing the rate affom zero rather than changed instantaneously. Hence the
which a small bump of the rolling layer is convected down-numerical results correspond to the actual experiment only if
hill with the rate at which the bump is amplified and diffuses the final surface is independent of the initial state, or, if the
[10]. They found that the bump affects the behavior uphillinitial conical surface is metastable up to @nclose to 0.6.

only if the slope exceeds the critical slope by an amount TO mimic the experiment more closely we repeat the in-
larger than tegration while slowly ramping the rotation rate frdm=0

to 2=0.6. We monitor the excess slope before an avalanche
oh 02 1 occurs, i.e., th(_a'amount the slope of the_ metastable surfgc;e
AS=S — —>_°% _ — (100  exceeds the critical slope, and the magnitude of the subcriti-
ar Doyo Dy cal region after an avalanche, i.e., the amount the slope of
static surface falls below the critical slope.
The metastable behavior was interpreted as the physical The conical surface is metastable@ss increased from
source of the Bagnold angle, i.e., the excess angle beyorzkro until the first avalanche occursat=0.2. The dynamics
the angle of repose at which a static sandpile first becomesf this avalanche is very similar to that for the instantaneous
unstable. This dynamical interpretation of the Bagnold angléump to =0.6. The main differences are that the excess
is very different from the usual mechanical interpretation ofslope before and the magnitude of the static slope after the
this angle[10]. avalanche are both much smaller for the instantaneous jump
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FIG. 3. The evolution of a conical pile &=0.6. The dashed line is the critical surface and the shaded area is the flowing lajgr. In
a flowing region has formed at the edge of the bucket. This failure zone propagates uphill, reaching the @@nfEnénstatic surface under
the flowing layer closely follows the critical surface. The flowing layer convects dowgthitind the final surfacéd) has a central region
with a slope less than the critical slope.

to 2=0.6. As( is increased further the critical slope de- stant slope surface is not stationary due to the finite value of
creases and becomes shallower than the new static slope. To obtain the static critical surface we integrate G-
Eventually a second avalanche occur€)at0.35. The pro- (8) in one dimension until the initial flowing layer is com-
cess repeats, leading to a third avalanch€at0.45 and a  pletely converted to static.

fourth at{)~0.55. After each avalanche a subcritical region  Once this static critical surface is obtained, we destabilize
is observed with a much smaller magnitude than for the init py tilting the surface through an excess slap8. We also
stantaneous jump. This indicates that the magnitude of thgssyme the tilt produces a uniform flowing lay&p. To
subcritical region after an avalanche increases with the eXjetermine the characteristics of the resulting avalanche, we

cess slope before the avalanche. This was confirmed by iRjseq a large\ S=0.1 with the same parameters as we used
stantaneously changing the rotation rate to different values g, 1,0 spinning bucket =500, D =0.001, x/ y=1/500 and

() and observing the subcritical region after the resultingAP:lofg The mesh size wasx=0.001 and time stept

avalanches. =2x10"'. The resulting avalanche has the same features as
the avalanche in the spinning bucket:

(1) The avalanche is induced by the growth of the rolling

The numerical results indicate that the central subcriticalayer at the foot of the pile.
region is closely related to the metastable behavior of the (2) This buildup of the rolling layer creates a valley in the
model. To understand the factors determining the limits ofstatic pile. The large local slope of the static pile causes the
metastability we consider the simpler case of a two-static material uphill to fail.
dimensional sandpile in a stationary contain€r=0 and (3) The failure zone propagates uphill until it reaches the
a=0). This eliminates the complications of the cylindrical top of the pile. As shown in Fig. 4, the surface of the static
geometry and the constant production of flowing grains bypile below the rolling layer follows closely the critical sur-
the bucket rotation. face. However, a more detailed examinatiorset of Fig. 4

We start by preparing a static critical surface. We firstshows that the surface of the static pile is slightly less steep
produce a surface at the critical slople/ )x= —tand; along  than the critical slope.
with a small uniform rolling layer. Her& is the linear posi- (4) Since the propagation of the failure zone is faster than
tion measured in units of the system sizg with the high  the convection of grains down the hill, the total height of the
end of the pile ak=0 and the low end at=1. This con- pile (static+flowing) is the same as the initial static pile.

B. Two-dimensional sandpile
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FIG. 4. The two-dimensional sandpile immediately after the b) L me
failure zone has propagated all the way to the top. The static layer 0.03 e
below the rolling layer follows closely the critical slogdashed -
line). However, as shown in the inset, the slope of the static layer . I
(solid line) is slightly less steep than the critical sloashed ling 2 0.02
-
¥=500
. . . . 001 [*
Therefore, the built-up flowing layer &t , the time the fail- L A -8
o p=10
ure zone reaches the top of the hill, is
0.00 : ‘ -
p(x,t*)=~h(x,00—h(x,t*)=AS(1—x). 0 500 1000 1500 2000
1/D
This is confirmed in Fig. 4, which shows a triangular shaped 0.04
flowing layer withp(0t*)=AS andp(1t*)=0. h
(5) The rolling layer flows downhill leaving a subcritical o ©
region atx<<0.5. The surface fox>0.5 follows closely the g ¢
critical surface except at the very edge where there is a K3
buildup of the static pil¢13]. . g
Since the magnitude of the subcritical region after an ava- 2 0.03 x\\
lanche depends on the excess slope before, we need to ex- I
plore the limits of metastability. The linear stability analysis D=0.001 .
predicts that the surface is stable until the excess slope ex- =500 S
ceedsAS* =1/(Dy) [10]. However, several characteristics T
of the avalanche indicate that a different mechanism may 0.02 . ‘ .
destabilize the surface. First, the instability always begins at 107" 10° 10° 10”7 10°
the bottom of the pile, indicating that the system size is im- Ap

portant. Second, the avalanche is generated when there is an
increase in the local steepness of the static pile. The linear FIG. 5. (a) The critical excess slopaS* as a function of ly.
stability analysis neglects the effect of the flowing layer onThe dashed line is a straight line fit showing the$~1/y. (b)
the static pile. ASa as a function of I0. For smallD (or large systemsAS is
To check if the linear stability dominates the dynamics,only weakly dependent ob. For largeD, AS"~1/D indicating
we determinedA S*, the minimum excess slope required to the linear mstabnhW may |n|t_|a_I|_ze the_ avalanches in small sygtems.
initialize an avalanche, as a function of the different param-_(c) ol as af.unCt.'on of the initial rolling layek . The dashed line
eters. Figure &) showsAS* as a function of the amplifica- '° 2 straight line fit showing that S~ —In(4p).
tion ratey. Although both the linear stability prediction and
the observed\S* are proportional to I, the observed val- systems. However, for larg, the subcritical region disap-
ues are a factor of 20 smaller than the linear prediction.  pears and the final state follows closely the critical surface.
A more serious conflict is shown in Fig(t§ whereAS* Figure Hc) showsAS as a function of the rolling layer
is plotted as a function ob. The numerical results clearly Ap. HereAS* =« —In(Ap) so that the metastability of the ini-
deviate from the linear stability prediction th&a8* «1/D for  tial granular surface depends on the amplitude of the initial
small D. Hence, for large systems, i.e., smBl| the linear  perturbation. In particular, a small but noninfinitesimal roll-
stability mechanism is not relevant to the surface evolutioring layer is required to induce an avalanche, indicating that
in this limit. On the other hand, for larg, AS*~1/D so  the avalanche is initiated through a nonlinear instability
the linear instability mechanism may be relevant for smallmechanism.



57 METASTABILITY OF A GRANULAR SURFACE INA . .. 4533

V. THEORY AND ANALYSIS where we assum@p<<1. This result is in agreement with
our numerical results of the previous sectiahS* ~1/y,
AS* ~—In(Ap) and AS* approximately independent d

To understand the metastable behavior observed numefigr smallD.
caIIy two effects must be considered: First, the ﬂOWIng Iayer A more intuitive understanding is obtained by rewriting
is amplified as it flows downhill, and second, the amplifica-the metastability criteria in terms of the original unscaled
tion of the flowing layer changes the slope of the static p”e-parameters. Using= yoLo/ve andAp=Apy/L, to rewrite

To do so we modify an argument given by Bouchaudggq, (15) in terms of the dimensionful variables we have
et al. for the amplification of a bump of rolling grain as it
APo)

flows[10]. Consider a critical surface tilted through an initial vo
n —
Lo

A. Nonlinear instability mechanism

excess slopd S with an uniform flowing layerA p. Neglect- AS*~
ing any change in the static pile, E¢6) shows that the
flowing layer will grow exponentially as it flows downhill.
For smallD, the flowing layer will approximately maintain

- 16
Yolo (18

Therefore, according to this model, the range of metastable
slopes and hence, the Bagnold angle, depends on the system

its shape so sizeL,. FurthermoreAS* vanishes a&,— showing that
0 if x<t, the mgtastabilit.y vanishes for infinite §ystems. This is be-
p(x,t)~ ASt (11) cause it takes timgy=Lq/v for the flowing material at the
Ape” if x>t. top of the hill to reach the bottom. During this time the

flowing layer is amplified by a factae”?S . The larger the
In terms of the dimensionless variables both the radius of thgystem the more the flowing layer is amplified and the more
bucket and the speed of the grains is unity. Therefore for |ikely an avalanche is initiated.
>1 all flowing material reaches the bottom, leaving the ori-
gin static state intact.
This argument indicates that the granular surface is stable

for all AS. However, this is the case only if the change in the We now return to the origin of the central subcritical re-
static pile can be neglected. The changé(®,t) for small ~ gion observed after an avalanche. Assume an avalanche is

D is initiated at the bottom of the pile. For largeand smallD,
we empirically find that failure zone propagates uphill much
t faster than the rate at which grains are convected down-
Ah(x,t)=h(x,t)—h(x,0)= —i dt'T'({h},{p}) wards. We find that the static pile below the flowing layer is
0 slightly less steep than the critical surfasee Fig. 4. Since
t the slope of the static pile is less than critical, the built-up
%—i dt’ yASp(t'). (12 rolling layer is continually converted to static as the layer
0 flows down the hill. The flowing layer is convected away
from the top of the pile first so this conversion occurs longest
Substituting Eq(11) for p(t') and integrating td>1 gives  at the bottom, leading to final surface that is shallower than

B. Central subcritical region

[sincep(x,t)=0 if t>X] the critical surface.
This argument can be made more quantitative by approxi-
Ah(x,t)=—Ap(e"S*-1), (13)  mating the built-up rolling layer as a constan(ix,t;) =AS

wheret, is the time the failure zone reaches the top of the
Therefore the flowing layer generates an additional excesgile. As a further approximation, we also assume that the
slope of underlying static pile has a constant slope slightly less steep
than criticaloh/ 9x= —tanf; + Sp where Sy, is the deviation
dAh of the static pile from the critical slope. For sm&llwe can
AS' (x)=— ax yASA pe?ASX (14  neglect the change in the shape of the flowing layer as it is
convected downhill:

If AS' is not small there will be a positive feedback mecha- 0 if t—t;>x
nism. The increased steepness makes the flowing layer grow P(X,t)=iAS ~yASt i
o e if t—t;>x.

faster, which in turn generates an even larger excess slope.
Once this positive feedback mechanism builds up, the in=|.
creased slope causes the material uphill to fail and the failur
zone propagates up to the top of the hill. Sink8'(x) is
largest atx=1 the avalanche must start at the bottom of the t ¢
pile in agreement with numerical observations. Ah(x,t)z—i dt’l“({h},{p})=i dt’ ySpp(x,t').

Using Eq.(14) the minimum initial excess angle required t i
for an avalanche occurs whenAS' (1)=~1 or (18)

yAS* Ape™S*~1. Solving forAS* gives

17

he change in the static pile after the flowing layer has
ﬁassed is

Substituting Eq.(17) for p(t’) and integrating td—t;>1

gives the total change in,
- In(Ap)+In(yAS*) InAp
AST~- 5 ~—— 19 Ah(X)=AS(1— e 75%). (19
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Therefore the slope of the static pile after the avalanche is convected downhill. This amplified layer causes the static
pile underneath to become steeper, which in turn causes the
@_ tan f.+ S+ @_ tands+ S+ vS-ASe YSoX flowing layer to become even larger. This positive feedback
ox - @n Ot Spt = —tandit Spt ySpASe mechanism initiates the avalanches in “large” systems. We
Sx numerically determined the excess slope required to destabi-
~—tand;+ ySpASe 77, (200 jize the metastable surface as a function of system param-
where we negect the second term sigas large. Tris 891 216 showed thal L agrees i our anaylc argument
result is in agreement with our qualitative picture. In particu—h P Ithu B Id Ip d ' d tX  SIop d i
lar, the deviation of the static pile from the critical surface is. ence the bagnold angle, depends on system sSiz€ and van
largest at smalk. |she§ in th_e I|m|t_qf large systems. Lastly we s_h_owed h_ow the
nonlinear instability leads to the central subcritical region via
a conversion of rolling grains to static as they roll downhill.
VI. SUMMARY
We have applied a model of granular surface flow devel-
oped by Bouchauet al. [10] and Mehtaet al. [11] to the
spinning bucket experiments of BaxtgB,4]. The model I thank G.W. Baxter for many useful discussions and
qualitatively reproduces the central subcritical region ob-comments and for providing the experimental data in Fig. 2.
served in the experiment at low rotation rates. The subcriticall am grateful to Ron McCarty for providing some of the
region occurs when a metastable surface becomes unstaldemputational resources. This work was supported by Cot-
via a nonlinear instability mechanism. The nonlinear insta- trell College Science Grant No. CC3993 from the Research
bility is due to the amplification of the rolling layer as it is Corporation.
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