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Metastability of a granular surface in a spinning bucket

Chuck Yeung
Division of Science, Pennsylvania State University at Erie, The Behrend College, Erie, Pennsylvania 16536

~Received 28 October 1997!

The surface shape of a spinning bucket of granular material is studied using a continuum model of surface
flow developed by Bouchaudet al. and Mehtaet al. An experimentally observed central subcritical region is
reproduced by the model. The subcritical region occurs when a metastable surface becomes unstable via a
nonlinearinstability mechanism. The nonlinear instability mechanism destabilizes the surface in large systems
while a linear instability mechanism is relevant for smaller systems. The range of angles in which the granular
surface is metastable vanishes with increasing system size.@S1063-651X~98!12504-7#

PACS number~s!: 83.70.Dk, 46.10.1z, 46.30.2i, 47.20.2k
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I. INTRODUCTION

Granular materials display very complex dynamics due
their both fluidlike and solidlike characteristics@1,2#. Even
simple experiments can produce unexpected results.
amples are recent experiments in which measurements
taken of the granular surface of a bucket of sand spun a
its cylindrical axis@3,4#. At low rotation rates a central re
gion was observed in which the slope is significantly le
than the critical slope@4–6#. This central subcritical region
was conjectured to be due to the inertia of the flowing gra
@4# since it could not be explained in terms of a simp
theory, which assumed the surface was everywhere cri
@7#.

Many models have been developed to describe the ev
tion of a granular surface@8–15#. These models often as
sume that the flow is restricted to a thin layer of grains n
the surface. Such models have been used extensivel
study avalanches of a granular material in a horizontal ro
ing drum@16#. However, the spinning bucket experiment is
better testing ground for these ideas since, at least at
rotation rates, the fundamental assumption of a thin flow
layer is more likely to be true@17#.

The purpose of this paper is twofold. The first is to app
the flow models to the spinning bucket experiment. The s
ond is to explore the source and limits of the metasta
behavior observed in the model. In particular, a continu
description of the surface flow developed by Bouchaudet al.
@10# and Mehtaet al. @11# is used. This model includes th
effect of the inertia of the flowing grains and is known
exhibit metastability via a linear instability mechanism@10#,
i.e., the surface remains metastable for a range of an
beyond the minimum angle of repose. This difference in
minimum and maximum stable angles was argued to be
physical source of the Bagnold angle@10#.

Here I show that this model qualitatively reproduces
central subcritical region. I determine the mechanism cre
ing the subcritical region and show that it is closely inte
twined with the metastability of the model. The metasta
surface becomes unstable via anonlinear instability, i.e., an
instability to very small but noninfinitesimal perturbation
This nonlinear instability determines the dynamics
‘‘large’’ systems while the linear instability is dominant fo
‘‘small’’ systems. The range of metastable slopes and, he
571063-651X/98/57~4!/4528~7!/$15.00
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the Bagnold angle, depends on the system size and van
in the limit of large systems.

II. SUMMARY OF EXPERIMENT

Figure 1 shows the setup for the spinning bucket exp
ment @3,4#. A bucket of radiusR0 is partially filled with
common building sand. A conical pile is prepared at t
angle of repose,u f534°61°, by slowly dropping the plastic
spheres onto the center of the stationary bucket.~Here we
label the angle of reposeu f since, in an ideal Coulomb ma
terial, the surface is everywhere critical and the angle
repose is the same as the angle of internal friction@1#!. The
rotation ratev is then slowly increased until it reaches th
desired value and the resulting surface shape is measur

FIG. 1. A cut-away view of the spinning bucket experiment.
conical pile is prepared at the angle of reposeu f . The cylinder is
then spun about its vertical axis at rotation ratev and the resulting
surface shape is measured.
4528 © 1998 The American Physical Society
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57 4529METASTABILITY OF A GRANULAR SURFACE IN A . . .
For an ideal Coulomb material the granular surface sh
is found by assuming that the friction force is saturated a
relating the net force on a surface element to the centrip
acceleration@3,4,6#. The critical slopeS2 is a function of
radial distancer andv,

S2~r !5
dh

dr
5

~r /R0!V22tanu f

11~r /R0!V2tanu f

, ~1!

whereh(r ) is the local height,V5Av2R0 /g is the dimen-
sionless rotation rate,g is the gravitational acceleration, an
R0 is the bucket radius. The2 superscript indicates that th
friction force is inwards since the grains flow outwards. No
thatS2(r ) is negative for smallV so that an unstable surfac
corresponds to]h/]r ,S2(r ).

Experimentally, the surface agrees well with Eq.~1! for
intermediate rotation rates 2&V&5 @3,4# but less well for
larger and smallerV. This paper will focus on the low rota
tion rates,V&2. Figure 2 shows the experimental surfa
shape obtained by Baxter forV50.578 along with the pre-
diction for a ideal Coulomb material usingu f534° @4#. The
corresponding slopes are shown in the inset. There is rea
able agreement between experiment and theory at the o
edge (r *R0/2). However, in the center,r &R0/2, the slope is
much less than the critical slope. This was thought to
because the critical theory neglects the effects of grain ine
@4#.

III. THE MODEL

To analyze the spinning bucket experiment we use
model of the granular surface evolution developed
Bouchaudet al. @10# and Mehtaet al. @11#. The model as-
sumes that all grains are stationary except for a thin laye
flowing grains on the top. We defineh(r ,t) as the local
height of the immobile pile andr(r ,t) as the thickness of the
rolling layer. Herer is the two-dimensional vector giving th

FIG. 2. The surface shape atV5Av2R0 /g50.578 as given in
Ref. @4#. The center of the bucket is atr 50 and the edge atr /R0

51. The dashed line is the result of an ideal Coulomb material w
u f534° and the points are the experimental data. The inset sh
the experimental and theoretical slopes. The experiment and th
agree near the outer edge of the bucket but the slope at the cen
significantly less negative than that of an ideal Coulomb mater
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projection of the local position onto thex-y plane.
The dynamics of the rolling layerr(r ,t) is given by

]r

]t
52¹•~vr!1D0¹2r1G0~$h%,$r%!, ~2!

wherev5v0r̂ is the local velocity of the rolling layer,D0 is
the diffusion constant, andG0 is the rate of conversion from
immobile to mobile grains and¹ and ¹2 are the two-
dimensional gradient and Laplacian, respectively. Assum
that the grains flow outward, the conversion rate is

G0~$h%,$r%!52rFg0S ]h

]r
2S2~r ! D1k0¹2hG

2a0F]h

]r
2S2~r !GHS ]h

]r
2S2~r ! D , ~3!

whereH is the Heaviside function. The first term inG0 ac-
counts for the conversion of static grains to rolling grai
when the slope is steeper than the critical slope (]h/]r
,S2) and vice versa for a shallower slope. Therk0¹2h
term causes valleys to fill and peaks to smooth. The last t
in G0 accounts for the jarring loose of static grains by t
rotation of the bucket even in the absence of a flowing lay
Finally, assuming that bulk rearrangement of material can
neglected, conservation of total material requires

]h

]t
52G0~$h%,$r%!. ~4!

For a050 the model is the same as that introduced
Bouchaudet al. @10#. Mehtaet al. allowed for a nonzeroa0
and also included an additional bulk arrangement term@11#.

To compare with experiment we require a rough estim
of the model parameters:

~i! The speed of the rolling grainsv0 can be estimated
from the speed of a grain falling through a grain diame
d0 : v0'A2gd0.

~ii ! A narrow bump of rolling grains starting at the cent
will reach the edge of the bucket in timet05R0 /v0 . Diffu-
sion causes this bump to spread to a widthDx5AD0t0

5AD0R0 /v0 when it reaches the edge. SinceDx;AR0 the
width of the bump is much less than the system size for la
R0 . Therefore the ‘‘large’’ system limit corresponds to

~Dx!2

R0
2

5
D0

v0R0
!1. ~5!

The ‘‘small’’ limit corresponds to the width of the bum
being of the same order as the system orD0 /(v0R)*1 @18#.

~iii ! g0DSd0 /v0 is the probability that a rolling grain jars
loose a static grain as it rolls over it. A typical excess slo
of DS50.1 and, assuming a 10% probability that the sta
grain is converted to rolling, givesg0'v0 /d0 .

~iv! The ratiok0 /g0 defines a length scale on which th
hole filling–peak smoothing mechanism dominates. This
important only at very small length scales on the order o
few grain diameters sok0'd0g0 .
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4530 57CHUCK YEUNG
~v! a0 depends on the noise in the apparatus. The gen
tion of rolling material by noise is assumed to be much l
effective than the convection so thata0!v0 .

Equations~2!–~4! can be rewritten in dimensionless for
by measuring lengths in terms of the bucket radiusR0 and
time in terms oft05R0 /v0 ,

]r

]t
52¹•~ r̂r!1D¹2r1G~$h%,$r%!, ~6!

where

G~$h%,$r%!52rFgS ]h

]r
2S2~r ! D1k¹2hG

2aF]h

]r
2S2~r !GHS ]h

]r
2S2~r ! D , ~7!

and

]h

]t
52G~$h%,$r%!. ~8!

The dimensionless parameters areD5D0 /(v0R), g
5g0R/v0 , k5k0 /v0 anda5a0 /v0 .

Assuming a large system, order of magnitude estimate
the dimensionless parameters can be obtained from the
lier estimates:

D[
D0

v0R
!1,g [

g0R

v0
'

R

d0
,

k[
k0

v0
'

d0

R
g, a[

a0

v0
!1. ~9!

The speed of the rolling layer is unity under this rescalin
As shown in the next section, the behavior of the mode
most sensitive tog and less sensitive to the exact value ofD
andk as long asD!1 andk/g!1.

An especially interesting feature of this model is that
displays metastability and hysteresis. Bouchaudet al. per-
formed a linear stability analysis by balancing the rate
which a small bump of the rolling layer is convected dow
hill with the rate at which the bump is amplified and diffus
@10#. They found that the bump affects the behavior uph
only if the slope exceeds the critical slope by an amo
larger than

DS5S22
]h

]r
.

v0
2

D0g0
5

1

Dg
. ~10!

The metastable behavior was interpreted as the phys
source of the Bagnold angle, i.e., the excess angle bey
the angle of repose at which a static sandpile first beco
unstable. This dynamical interpretation of the Bagnold an
is very different from the usual mechanical interpretation
this angle@10#.
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IV. NUMERICAL RESULTS

A. Spinning bucket

To analyze the spinning bucket experiment, Eqs.~6!–~8!
were numerically integrated in polar coordinates with a
muthal symmetry. Using the experimental parameters,u f

534°, d0'0.25 mm andR0512.5 cm @4#, we obtain g
5R0 /d05500 and k/g5d0 /R051/200. Assuming a
‘‘large’’ system and small vibrations, we chooseD50.001
!1 and a51028. A third-order Adam-Bashford method
was used@19# with mesh-sizedx50.002 and time-stepdt
5531027. Zero slope boundary conditions are applied
r 50 and zero curvature boundary conditions atr 51. Any
rolling material reaching the edge is converted to static.

An initial conical pile is prepared at the critical angle an
the rotation rateV is increased instantaneously fromV50
to V50.6. Since the critical slope decreases withV the ini-
tial surface is unstable and, as shown in Fig. 3, an avalan
is generated. Att'0.125 @Fig. 3~a!# a buildup of flowing
material is visible at the edge of the bucket. This build
generates a steep local slope in the static pile that cause
static material uphill to fail. The failure then propagates u
hill, reaching the center of the bucket att'0.2 @Fig. 3~b!#.
The static pile beneath the flowing layer approximately f
lows the critical curve. The flowing layer then convects
the edge of bucket@Fig. 3~c!# leaving behind a central sub
critical region in which the slope is much less than the cr
cal slope@Fig. 3~d!#.

The integration was repeated with different values ofD,
g, and k to test the robustness of the results. The cen
subcritical region is qualitatively the same for allg*400 and
D&0.005, becoming more pronounced for largerg and
smaller D. For smallerg and largerD (g&200 and D
*0.02) the final surface follows closely the critical surfac
Varying the ratiok/g or a did not have noticeable effect a
long as they were small but nonzero.

A comparison of model results in Fig. 3 with the expe
mental data in Fig. 2 shows that the essential features of
experiment are reproduced. In particular, there is a subc
cal region in the center and a region near the edge that
lows the critical surface. However, a more detailed analy
shows two important differences. First, the flowing layer
much larger than the few grains assumed in the model. S
ond, in the experiment, the rotation rate is slowly ramped
from zero rather than changed instantaneously. Hence
numerical results correspond to the actual experiment on
the final surface is independent of the initial state, or, if t
initial conical surface is metastable up to anV close to 0.6.

To mimic the experiment more closely we repeat the
tegration while slowly ramping the rotation rate fromV50
to V50.6. We monitor the excess slope before an avalan
occurs, i.e., the amount the slope of the metastable sur
exceeds the critical slope, and the magnitude of the subc
cal region after an avalanche, i.e., the amount the slop
static surface falls below the critical slope.

The conical surface is metastable asV is increased from
zero until the first avalanche occurs atV'0.2. The dynamics
of this avalanche is very similar to that for the instantaneo
jump to V50.6. The main differences are that the exce
slope before and the magnitude of the static slope after
avalanche are both much smaller for the instantaneous j
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57 4531METASTABILITY OF A GRANULAR SURFACE IN A . . .
FIG. 3. The evolution of a conical pile atV50.6. The dashed line is the critical surface and the shaded area is the flowing layer.~a!
a flowing region has formed at the edge of the bucket. This failure zone propagates uphill, reaching the center in~b!. The static surface unde
the flowing layer closely follows the critical surface. The flowing layer convects downhill~c! and the final surface~d! has a central region
with a slope less than the critical slope.
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to V50.6. As V is increased further the critical slope d
creases and becomes shallower than the new static s
Eventually a second avalanche occurs atV'0.35. The pro-
cess repeats, leading to a third avalanche atV'0.45 and a
fourth atV'0.55. After each avalanche a subcritical regi
is observed with a much smaller magnitude than for the
stantaneous jump. This indicates that the magnitude of
subcritical region after an avalanche increases with the
cess slope before the avalanche. This was confirmed by
stantaneously changing the rotation rate to different value
V and observing the subcritical region after the result
avalanches.

B. Two-dimensional sandpile

The numerical results indicate that the central subcrit
region is closely related to the metastable behavior of
model. To understand the factors determining the limits
metastability we consider the simpler case of a tw
dimensional sandpile in a stationary container (V50 and
a50). This eliminates the complications of the cylindric
geometry and the constant production of flowing grains
the bucket rotation.

We start by preparing a static critical surface. We fi
produce a surface at the critical slope]h/]x52tanu f along
with a small uniform rolling layer. Herex is the linear posi-
tion measured in units of the system sizeL0 with the high
end of the pile atx50 and the low end atx51. This con-
pe.
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stant slope surface is not stationary due to the finite value
k. To obtain the static critical surface we integrate Eqs.~6!–
~8! in one dimension until the initial flowing layer is com
pletely converted to static.

Once this static critical surface is obtained, we destabi
it by tilting the surface through an excess slopeDS. We also
assume the tilt produces a uniform flowing layerDr. To
determine the characteristics of the resulting avalanche,
used a largeDS50.1 with the same parameters as we us
for the spinning bucketg5500,D50.001,k/g51/500 and
Dr51028. The mesh size wasdx50.001 and time stepdt
5231027. The resulting avalanche has the same feature
the avalanche in the spinning bucket:

~1! The avalanche is induced by the growth of the rolli
layer at the foot of the pile.

~2! This buildup of the rolling layer creates a valley in th
static pile. The large local slope of the static pile causes
static material uphill to fail.

~3! The failure zone propagates uphill until it reaches t
top of the pile. As shown in Fig. 4, the surface of the sta
pile below the rolling layer follows closely the critical su
face. However, a more detailed examination~inset of Fig. 4!
shows that the surface of the static pile is slightly less st
than the critical slope.

~4! Since the propagation of the failure zone is faster th
the convection of grains down the hill, the total height of t
pile ~static1flowing! is the same as the initial static pile
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Therefore, the built-up flowing layer att* , the time the fail-
ure zone reaches the top of the hill, is

r~x,t* !'h~x,0!2h~x,t* !5DS~12x!.

This is confirmed in Fig. 4, which shows a triangular shap
flowing layer withr(0,t* )5DS andr(1,t* )50.

~5! The rolling layer flows downhill leaving a subcritica
region atx,0.5. The surface forx@0.5 follows closely the
critical surface except at the very edge where there i
buildup of the static pile@13#.

Since the magnitude of the subcritical region after an a
lanche depends on the excess slope before, we need t
plore the limits of metastability. The linear stability analys
predicts that the surface is stable until the excess slope
ceedsDS* 51/(Dg) @10#. However, several characteristic
of the avalanche indicate that a different mechanism m
destabilize the surface. First, the instability always begin
the bottom of the pile, indicating that the system size is i
portant. Second, the avalanche is generated when there
increase in the local steepness of the static pile. The lin
stability analysis neglects the effect of the flowing layer
the static pile.

To check if the linear stability dominates the dynamic
we determinedDS* , the minimum excess slope required
initialize an avalanche, as a function of the different para
eters. Figure 5~a! showsDS* as a function of the amplifica
tion rateg. Although both the linear stability prediction an
the observedDS* are proportional to 1/g, the observed val-
ues are a factor of 20 smaller than the linear prediction.

A more serious conflict is shown in Fig. 5~b! whereDS*
is plotted as a function ofD. The numerical results clearl
deviate from the linear stability prediction thatDS* }1/D for
small D. Hence, for large systems, i.e., smallD, the linear
stability mechanism is not relevant to the surface evolut
in this limit. On the other hand, for largeD, DS* ;1/D so
the linear instability mechanism may be relevant for sm

FIG. 4. The two-dimensional sandpile immediately after t
failure zone has propagated all the way to the top. The static l
below the rolling layer follows closely the critical slope~dashed
line!. However, as shown in the inset, the slope of the static la
~solid line! is slightly less steep than the critical slope~dashed line!.
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systems. However, for largeD, the subcritical region disap
pears and the final state follows closely the critical surfac

Figure 5~c! showsDS as a function of the rolling layer
Dr. HereDS* }2 ln(Dr) so that the metastability of the ini
tial granular surface depends on the amplitude of the ini
perturbation. In particular, a small but noninfinitesimal ro
ing layer is required to induce an avalanche, indicating t
the avalanche is initiated through a nonlinear instabi
mechanism.

er

r

FIG. 5. ~a! The critical excess slopeDS* as a function of 1/g.
The dashed line is a straight line fit showing thatDS;1/g. ~b!
DSa* as a function of 1/D. For smallD ~or large systems! DS is
only weakly dependent onD. For largeD, DS* ;1/D indicating
the linear instability may initialize the avalanches in small system
~c! DS* as a function of the initial rolling layerDr. The dashed line
is a straight line fit showing thatDS;2 ln(Dr).
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57 4533METASTABILITY OF A GRANULAR SURFACE IN A . . .
V. THEORY AND ANALYSIS

A. Nonlinear instability mechanism

To understand the metastable behavior observed num
cally two effects must be considered: First, the flowing lay
is amplified as it flows downhill, and second, the amplific
tion of the flowing layer changes the slope of the static p

To do so we modify an argument given by Boucha
et al. for the amplification of a bump of rolling grain as
flows @10#. Consider a critical surface tilted through an initi
excess slopeDS with an uniform flowing layerDr. Neglect-
ing any change in the static pile, Eq.~6! shows that the
flowing layer will grow exponentially as it flows downhill
For smallD, the flowing layer will approximately maintain
its shape so

r~x,t !'H 0 if x,t,

DregDSt if x.t.
~11!

In terms of the dimensionless variables both the radius of
bucket and the speed of the grains is unity. Therefore fot
.1 all flowing material reaches the bottom, leaving the o
gin static state intact.

This argument indicates that the granular surface is st
for all DS. However, this is the case only if the change in t
static pile can be neglected. The change inh(x,t) for small
D is

Dh~x,t ![h~x,t !2h~x,0!52E
0

t

dt8G~$h%,$r%!

'2E
0

t

dt8gDSr~ t8!. ~12!

Substituting Eq.~11! for r(t8) and integrating tot.1 gives
@sincer(x,t)50 if t.x]

Dh~x,t !52Dr~egDSx21!, ~13!

Therefore the flowing layer generates an additional exc
slope of

DS8~x!52
dDh

dx
5gDSDregDSx. ~14!

If DS8 is not small there will be a positive feedback mech
nism. The increased steepness makes the flowing layer g
faster, which in turn generates an even larger excess s
Once this positive feedback mechanism builds up, the
creased slope causes the material uphill to fail and the fai
zone propagates up to the top of the hill. SinceDS8(x) is
largest atx51 the avalanche must start at the bottom of
pile in agreement with numerical observations.

Using Eq.~14! the minimum initial excess angle require
for an avalanche occurs whenDS8(1)'1 or
gDS* DregDS* '1. Solving forDS* gives

DS* '2
ln~Dr!1 ln~gDS* !

g
'2

lnDr

g
, ~15!
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where we assumeDr!1. This result is in agreement with
our numerical results of the previous section:DS* ;1/g,
DS* ;2 ln(Dr) and DS* approximately independent ofD
for small D.

A more intuitive understanding is obtained by rewritin
the metastability criteria in terms of the original unscal
parameters. Usingg5g0L0 /v0 andDr5Dr0 /L0 to rewrite
Eq. ~15! in terms of the dimensionful variables we have

DS* '2
v0

g0L0
lnS Dr0

L0
D . ~16!

Therefore, according to this model, the range of metasta
slopes and hence, the Bagnold angle, depends on the sy
sizeL0 . FurthermoreDS* vanishes asL0→` showing that
the metastability vanishes for infinite systems. This is b
cause it takes timet05L0 /v0 for the flowing material at the
top of the hill to reach the bottom. During this time th
flowing layer is amplified by a factoreg0DS t0. The larger the
system the more the flowing layer is amplified and the m
likely an avalanche is initiated.

B. Central subcritical region

We now return to the origin of the central subcritical r
gion observed after an avalanche. Assume an avalanch
initiated at the bottom of the pile. For largeg and smallD,
we empirically find that failure zone propagates uphill mu
faster than the rate at which grains are convected do
wards. We find that the static pile below the flowing layer
slightly less steep than the critical surface~see Fig. 4!. Since
the slope of the static pile is less than critical, the built-
rolling layer is continually converted to static as the lay
flows down the hill. The flowing layer is convected awa
from the top of the pile first so this conversion occurs long
at the bottom, leading to final surface that is shallower th
the critical surface.

This argument can be made more quantitative by appr
mating the built-up rolling layer as a constantr(x,t1)5DS
where t1 is the time the failure zone reaches the top of t
pile. As a further approximation, we also assume that
underlying static pile has a constant slope slightly less st
than critical]h/]x52tanu f1SD whereSD is the deviation
of the static pile from the critical slope. For smallD we can
neglect the change in the shape of the flowing layer as
convected downhill:

r~x,t !5H 0 if t2t1.x

DSe2gDSt if t2t1.x.
~17!

The change in the static pile after the flowing layer h
passed is

Dh~x,t !52E
t1

t

dt8G~$h%,$r%!5E
t1

t

dt8gSDr~x,t8!.

~18!

Substituting Eq.~17! for r(t8) and integrating tot2t1.1
gives the total change inh,

Dh~x!5DS~12e2gSDx!. ~19!
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Therefore the slope of the static pile after the avalanche

]h

]x
52tan u f1SD1

]Dh

]x
52tanu f1SD1gSDDSe2gSDx

'2tanu f1gSDDSe2gSDx, ~20!

where we neglect the second term sinceg is large. This
result is in agreement with our qualitative picture. In partic
lar, the deviation of the static pile from the critical surface
largest at smallx.

VI. SUMMARY

We have applied a model of granular surface flow dev
oped by Bouchaudet al. @10# and Mehtaet al. @11# to the
spinning bucket experiments of Baxter@3,4#. The model
qualitatively reproduces the central subcritical region o
served in the experiment at low rotation rates. The subcrit
region occurs when a metastable surface becomes uns
via a nonlinear instability mechanism. The nonlinear inst
bility is due to the amplification of the rolling layer as it
s

er
d

,
th

v

s

ar
,

-

l-

-
al
ble

convected downhill. This amplified layer causes the sta
pile underneath to become steeper, which in turn causes
flowing layer to become even larger. This positive feedba
mechanism initiates the avalanches in ‘‘large’’ systems. W
numerically determined the excess slope required to des
lize the metastable surface as a function of system par
eters and showed that it agrees with our analytic argume
In particular, the model predicts that the excess slope,
hence the Bagnold angle, depends on system size and
ishes in the limit of large systems. Lastly we showed how
nonlinear instability leads to the central subcritical region
a conversion of rolling grains to static as they roll downh
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